What is the algebraic solution to the following system: the unit circle $x^{\wedge} 2+y^{\wedge} 2=1$ and $y=x^{\wedge} 2$? When I graph these, it is obvious that there are 2 solutions.

$$
\begin{array}{r}
\text { If } y=x^{2} \text { and } x^{2}+y^{2}=1 \\
\text { then } x^{2}+x^{4}=1 \\
\text { so } x^{4}+x^{2}-1=0
\end{array}
$$

I would treat this as a QUADRATIC equation by letting $\mathrm{x}^{2}=\mathrm{z}$ and so $\mathrm{x}^{4}=\mathrm{z}^{2}$
The equation now looks like this...

$$
z^{2}+z-1=0
$$

Using the quadratic formula $\mathrm{z}=\frac{-1 \pm \sqrt{ }(1+4)}{2}$

$$
\begin{aligned}
& =\frac{-1 \pm \sqrt{ }(5)}{2} \\
& \approx 0.618 \text { or }-1.618
\end{aligned}
$$

Now I have to find x
$x^{2}=0.618$ so $x= \pm \sqrt{ } 0.618=0.786$ or -0.786
but if $x^{2}=-1.618$ there are only imaginary solutions which we can't put on a 2D graph.

The two intersection points are $(0.786,0.618)$ and $(-0.786,0.618)$
I love diagrams and graphs to enhance my answers!

NOW I have an unexpected treat! I can show you where the imaginary solutions are too!!!

There are extra imaginary points which satisfy $x^{2}+y^{2}=1$ and $y=x^{2}$
Earlier I said $\mathrm{x}^{2}=-1.618$ so $\mathrm{x}= \pm \sqrt{ }(-1.618)= \pm \mathbf{1 . 2 7 2 i}$ and $y=-1.618$

I can't fully explain this here but please see my website to find out more about these extra bits on graphs!
www.phantomgraphs.weebly.com

